DYNAMIC BEHAVIOR OF PRE-STRESSED SLAB BRIDGES

M.Sc.ing.I.Paeglite, Prof.,Dr.Sc.ing J.Smirnovs,
Prof.,Dr.Sc.ing A.Paeglitis

Riga Technical University
Department of Roads and Bridges
Contents

1. Introduction
2. Methods of the Vibration analysis
3. Vibration characteristic values
4. Experimental testing results and analysis
5. Conclusions
Introduction

• Pre-stressed in-situ slab bridges in last 10 years have been used for overpasses on road junctions where height of the bridge deck and space under the superstructure is limited by the levels of roads.

• Because of the technology that has developed and become more economical, this type of bridge is easy and fast to build.

• Highway bridges are subjected to the dynamic forces imposed by traffic. These forces are stochastic in their nature and impact load significantly exceed static loads.

• Dynamic loads influence bridge load carrying capacity - can cause deformations, vibrations, deterioration and can cause cracking of concrete structures.
Two modal analysis methods:
- Experimental modal analysis (EMA),
- Operational modal analysis (OMA).

Traffic is a random loading, therefore characterized by probabilistic analysis.

Operational modal analysis (OMA) - relatively cheap equipment (accelerometers) and simple way of recording data.

Measurements can be analysed in two domains – frequency and time domain.
Vibration characteristic values

- Natural frequency
- Acceleration
- Logarithmic decrement - Damping
- Dynamic amplification factor (DAF)

$$\delta = \frac{1}{n} \ln\left(\frac{A_1}{A_n}\right)$$

$$DAF = \frac{\varepsilon(dyn)}{\varepsilon(stat)}$$

- Multiplying the static live load by DAF or built-in value of a live load model
- DAF – as a function of the bridge span length
Experimental testing

12th International Conference

*"Modern Building Materials, Structures and Techniques"

26.05. – 27.05.2016, Vilnius, Lithuania

Bridges: 1 RC and 3 PRC slab bridges, 1 ribbed RC and 3 PRC ribbed slab bridges

<table>
<thead>
<tr>
<th>Bridge</th>
<th>Span length (m)</th>
<th>Width (m)</th>
<th>Height (m)</th>
<th>Span/depth ratio</th>
<th>Structure</th>
<th>Nr. of ribs</th>
<th>Calculated 1st mode natural frequency, Hz</th>
<th>Measured natural frequency, Hz</th>
<th>Max DAF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge over Lauce River</td>
<td>11,41</td>
<td>8</td>
<td>0,5</td>
<td>23</td>
<td>Simply supported (s.s) RC slab</td>
<td>1</td>
<td>8.88</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Bridge on Road A12</td>
<td>34</td>
<td>10,5</td>
<td>1,4</td>
<td>24</td>
<td>Simply supported (s.s) PRC slab</td>
<td>1</td>
<td>2.45</td>
<td>3</td>
<td>1,5</td>
</tr>
<tr>
<td>Bridge over Railway Jelgava - Tukums</td>
<td>18</td>
<td>11,53</td>
<td>0,8</td>
<td>23</td>
<td>PRC slab frame</td>
<td>1</td>
<td>5.23</td>
<td>5,5</td>
<td>1,9</td>
</tr>
<tr>
<td>Overpass over Railway Riga - Krustpils</td>
<td>22,5</td>
<td>13</td>
<td>0,9</td>
<td>25</td>
<td>PRC slab frame</td>
<td>1</td>
<td>4,3</td>
<td>5</td>
<td>3,5</td>
</tr>
<tr>
<td>Bridge over River Dīvāja</td>
<td>25,5</td>
<td>15</td>
<td>1,3</td>
<td>20</td>
<td>Simply supported (s.s) PRC ribbed slab</td>
<td>2</td>
<td>5.68</td>
<td>7.3</td>
<td>2</td>
</tr>
<tr>
<td>Overpass on road A6</td>
<td>19,5</td>
<td>11,3</td>
<td>1,0</td>
<td>20</td>
<td>RC ribbed slab frame</td>
<td>3</td>
<td>5.56</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Overpass on road P8</td>
<td>27,4</td>
<td>11,45</td>
<td>1,1</td>
<td>25</td>
<td>PRC ribbed slab frame</td>
<td>2</td>
<td>3.93</td>
<td>4</td>
<td>1,3</td>
</tr>
<tr>
<td>Overpass on road E22</td>
<td>30</td>
<td>19,5</td>
<td>1,1</td>
<td>27</td>
<td>PRC ribbed slab frame</td>
<td>3</td>
<td>4,8</td>
<td>4,9</td>
<td>5</td>
</tr>
</tbody>
</table>
Experimental testing

Bridges: 1 RC and 3 PRC slab bridges, 1 ribbed RC and 3 PRC ribbed slab bridges

<table>
<thead>
<tr>
<th>Bridge</th>
<th>Span length (m)</th>
<th>Width (m)</th>
<th>Height (m)</th>
<th>Span/depth ratio</th>
<th>Structure</th>
<th>Nr. of ribs</th>
<th>Max DAF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge over Lauce River</td>
<td>11,41</td>
<td>8</td>
<td>0,5</td>
<td>23</td>
<td>Simply supported (s.s) RC slab</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Bridge on Road A12</td>
<td>34</td>
<td>10,5</td>
<td>1,4</td>
<td>24</td>
<td>Simply supported (s.s) PRC slab</td>
<td>1</td>
<td>1,5</td>
</tr>
<tr>
<td>Bridge over Railway Jelgava - Tukums</td>
<td>18</td>
<td>11,53</td>
<td>0,8</td>
<td>23</td>
<td>PRC slab frame</td>
<td>1</td>
<td>1,9</td>
</tr>
<tr>
<td>Overpass over Railway Riga - Krustpils</td>
<td>22,5</td>
<td>13</td>
<td>0,9</td>
<td>25</td>
<td>PRC slab frame</td>
<td>1</td>
<td>3,5</td>
</tr>
<tr>
<td>Bridge over River Dīvāja</td>
<td>25,5</td>
<td>15</td>
<td>1,3</td>
<td>20</td>
<td>Simply supported (s.s) PRC ribbed slab</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Overpass on road A6</td>
<td>19,5</td>
<td>11,3</td>
<td>1,0</td>
<td>20</td>
<td>RC ribbed slab frame</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Overpass on road P8</td>
<td>27,4</td>
<td>11,45</td>
<td>1,1</td>
<td>25</td>
<td>PRC ribbed slab frame</td>
<td>2</td>
<td>1,3</td>
</tr>
<tr>
<td>Overpass on road E22</td>
<td>30</td>
<td>19,5</td>
<td>1,1</td>
<td>27</td>
<td>PRC ribbed slab frame</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>
Natural Frequency

DAF (for even pavement) and span length

DAF (for even pavement) and span/depth ratio

Natural frequency and span length

Damping ratio and span/depth ratio
Natural Frequency

12th International Conference
"Modern Building Materials, Structures and Techniques"
26.05. – 27.05.2016, Vilnius, Lithuania

DAF (uneven pavement 20 km/h) and span length

DAF and span/depth ratio

DAF (uneven pavement 40 km/h) and span/depth ratio

DAF (uneven pavement 20 km/h) and natural frequency
Conclusions

• Pavement evenness and vehicle speed correlate and results show that for speed of 20km/h DAF can increase up to 2.
• PRC bridges in plan radius or with one sided slopes can have DAF up to 5.
• For PRC bridges span/depth ratio correlate with damping ratio- higher span/depth ratio show decrease in damping ratio.
• For even pavement condition DAF values are lower than 1,4.
Thank You for your attention!

Acknowledgement: The research leading to these results has received the funding from Latvia state research programme under grant agreement "Innovative Materials and Smart Technologies for Environmental Safety, IMATEH".