Wavelet transform based damage detection in a plate structure

Rims Janeliukstis, Sandris Rucevskis, Pavel Akishin and Andris Chate

 Institute of Materials and Structures, Riga Technical University, Riga, Latvia

e-mail of the corresponding author: Rims.Janeliukstis_1@rtu.lv
Problem statement

Solution

nondestructive structural health monitoring methods

taken from www.ptclwg.com
taken from www.rbengineering.com
Problem statement

- We propose a method for damage identification based on transform of structural vibration modes

\[\text{Continuous Wavelet Transform (CWT) in space domain} \]
aluminium plate
(1000 x 1000 x 5 mm)

ANSYS model – 8-node shear deformable shell elements.

- 100 x 100 equal length elements;
- $E = 69$ GPa, $\nu = 0.31$, $\rho = 2708$ kg/m3;
- **Damage** - reduction of flexural stiffness of the selected elements (decrease in element thickness).
Numerical simulation

Input
- Plate numerical data.

Modal analysis
- 12 mode shapes.

Damage detection algorithm
- Sharp large amplitude peaks in damage index profiles – zone of damage.
Algorithm

Generalized 2D-CWT for isotropic wavelet

1. \(W_{s,a,b} = \frac{1}{\sqrt{s \cdot s}} \iint f(x, y) \cdot \psi^\ast \left(\frac{x-a}{s}, \frac{y-b}{s} \right) dx dy = \iint f(x, y) \cdot \psi^\ast_{s,a,b}(x, y) dx dy \)

Damage index 2D-mode shape data

2. \(DI_{i,j}^{n_{2DCWT}} = W_{i,j}^{n} = \iint w_{i,j}^{n} \cdot \psi^\ast_{s,a,b}(x, y) dx dy \)

3. \(DI_{i,j} = \frac{1}{N} \sum_{n=1}^{N} \frac{DI_{i,j}^{n}}{DI_{i,j,\max}^{n}} \)

Standardized damage index

4. \(SDI_{i,j} = \frac{DI_{i,j} - \mu_{DI}}{\sigma_{DI}} \)

Damage estimate reliability

5. \(\text{DER} = 100\% \cdot \frac{(J \cdot I)^{-1} \sum_{j=1}^{J} \sum_{i=1}^{I} SDI_{i,j}}{(M \cdot N)^{-1} \sum_{j=1}^{M} \sum_{i=1}^{N} SDI_{i,j}} \)
Sensor density

• It is often not possible to equip a structure with dense sensor grid.

• Input mode shape data was divided by integer numbers $p = 1:8$.

\[
\text{Sensor density} = \text{size}(w_{ij}) \cdot p^{-1}
\]
• RESULTS
Best wavelet

Pet Hat wavelet (in frequency domain)

\[\psi(\omega_x, \omega_y) = \begin{cases}
\cos^2 \left(\frac{\pi \ln(\omega_x + i \omega_y)}{2 \ln(2)} \right) & \rightarrow 0.5 < |\omega_x + i \omega_y| < 2 \\
0 & \text{otherwise}
\end{cases} \]

expression adopted from Wavelet Toolbox, Matlab™
1st scale yields 98.16% DER
Sensor density increases
$p = 1$

101 × 101 points

SDI

mode shape sum
\[p = 3 \]

![Graph showing mode shape sum for 34x34 points SDI](image)
$$p = 5$$

21 × 21 points

SDI

mode shape sum
\[p = 8 \]

mode shape sum

13\times13 points

SDI
RIGA TECHNICAL UNIVERSITY

Conclusions

• Spatial 2D -CWT is a reliable tool for damage localization in plate structures.

• Overall, 20 different wavelet functions were tested at scales 1:32.

• Best wavelet – Pet Hat wavelet (isotropic) with DER = 98.16 % at 1st scale.
Conclusions

- SDI profiles reveal the location of damage at different sensor densities.

- No clear trend of DER vs sensor density.

- DER vs Scale analysis is necessary to determine the appropriate wavelet scale.
Acknowledgement: The research leading to these results has received the funding from Latvia state research programme under grant agreement "Innovative Materials and Smart Technologies for Environmental Safety, IMATEH".

Thank You for your attention!